Copied to
clipboard

G = C53:6C4order 500 = 22·53

6th semidirect product of C53 and C4 acting faithfully

metabelian, supersoluble, monomial, A-group

Aliases: C53:6C4, C52:7F5, C52:6Dic5, C5:D5.2D5, C5:1(D5.D5), C5:2(C52:C4), (C5xC5:D5).3C2, SmallGroup(500,46)

Series: Derived Chief Lower central Upper central

C1C53 — C53:6C4
C1C5C52C53C5xC5:D5 — C53:6C4
C53 — C53:6C4
C1

Generators and relations for C53:6C4
 G = < a,b,c,d | a5=b5=c5=d4=1, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b2, dcd-1=c3 >

Subgroups: 392 in 44 conjugacy classes, 11 normal (7 characteristic)
Quotients: C1, C2, C4, D5, Dic5, F5, D5.D5, C52:C4, C53:6C4
25C2
2C5
2C5
4C5
4C5
4C5
4C5
4C5
4C5
125C4
5D5
5D5
10D5
10D5
25C10
2C52
2C52
4C52
4C52
4C52
4C52
4C52
4C52
25F5
25Dic5
25F5
5C5xD5
5C5xD5
10C5xD5
10C5xD5
5C52:C4
5D5.D5
5D5.D5

Permutation representations of C53:6C4
On 20 points - transitive group 20T125
Generators in S20
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 4 2 5 3)(6 8 10 7 9)(11 12 13 14 15)(16 20 19 18 17)
(1 3 5 2 4)(6 9 7 10 8)(11 12 13 14 15)(16 20 19 18 17)
(1 17 8 12)(2 16 9 11)(3 20 10 15)(4 19 6 14)(5 18 7 13)

G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,4,2,5,3)(6,8,10,7,9)(11,12,13,14,15)(16,20,19,18,17), (1,3,5,2,4)(6,9,7,10,8)(11,12,13,14,15)(16,20,19,18,17), (1,17,8,12)(2,16,9,11)(3,20,10,15)(4,19,6,14)(5,18,7,13)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,4,2,5,3)(6,8,10,7,9)(11,12,13,14,15)(16,20,19,18,17), (1,3,5,2,4)(6,9,7,10,8)(11,12,13,14,15)(16,20,19,18,17), (1,17,8,12)(2,16,9,11)(3,20,10,15)(4,19,6,14)(5,18,7,13) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,4,2,5,3),(6,8,10,7,9),(11,12,13,14,15),(16,20,19,18,17)], [(1,3,5,2,4),(6,9,7,10,8),(11,12,13,14,15),(16,20,19,18,17)], [(1,17,8,12),(2,16,9,11),(3,20,10,15),(4,19,6,14),(5,18,7,13)]])

G:=TransitiveGroup(20,125);

38 conjugacy classes

class 1  2 4A4B5A5B5C···5AF10A10B
order1244555···51010
size125125125224···45050

38 irreducible representations

dim111224444
type+++-++
imageC1C2C4D5Dic5F5D5.D5C52:C4C53:6C4
kernelC53:6C4C5xC5:D5C53C5:D5C52C52C5C5C1
# reps1122228416

Matrix representation of C53:6C4 in GL4(F41) generated by

16000
01600
3331180
3133018
,
37000
01000
351180
2317016
,
10000
03700
913180
112016
,
53790
37509
00364
00436
G:=sub<GL(4,GF(41))| [16,0,33,31,0,16,31,33,0,0,18,0,0,0,0,18],[37,0,35,23,0,10,1,17,0,0,18,0,0,0,0,16],[10,0,9,11,0,37,13,2,0,0,18,0,0,0,0,16],[5,37,0,0,37,5,0,0,9,0,36,4,0,9,4,36] >;

C53:6C4 in GAP, Magma, Sage, TeX

C_5^3\rtimes_6C_4
% in TeX

G:=Group("C5^3:6C4");
// GroupNames label

G:=SmallGroup(500,46);
// by ID

G=gap.SmallGroup(500,46);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,10,242,1203,808,5004,5009]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^2,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C53:6C4 in TeX

׿
x
:
Z
F
o
wr
Q
<